Molecular Biophysics (IBiS 401) or DGP Structural Basis of Signal Transduction (DGP 466 - Offered Every Spring - Class size limited to 6 students)
IBiS 401: Protein structure; nucleic acids structure; forces that determine macromolecular structure; transport and diffusion; macromolecular assemblies; molecular machines and single molecule studies; x-ray crystallography; electron microscopy and image reconstruction; nuclear magnetic resonance; spectroscopy.
DGP 466: The structural and thermodynamic basis by which protein- protein or protein-nucleic acid interactions mediate signal transduction. Signaling pathways used to explore how the structural biological mechanisms underlying these pathways can be experimentally determined and understood.
Biophysical Methods for Macromolecular Analysis (IBiS 409)
The course will explore the principles and practical applications of biophysical methods in contemporary research, with an emphasis on understanding macromolecular structure and function. A broad range of techniques including various forms of spectroscopy and microscopy will be covered. Students will learn practical aspects of design and conduct of experiments and review scientific literature demonstrating the value of these methods.
Quantitative Biology (IBiS 410)
Quantitative approach to molecular and cell biology, focused on developing an understanding of connections between biomolecule structure and dynamics, and behavior of cells. The course will also include review of topics from statistics of random variables and statistical data analysis relevant to biology and biophysics.